A Software Toolbox For Robotics
Final Report
October 14, 1985
NASA GRANT NAG-1-533

J. C. SANWAL
Principal Investigator
Department of Mathematics
The College of William and Mary
Williamsburg, Virginia 23185

Project Monitor
Mr. F. Wallace Harrison, Jr.
Mail Stop 152D
NASA Langley Research Center
Hampton, Virginia 23665

{NASA-CE~181267) A SCFTIRARE TCCLECGX FOR

BCBCTIICS Final Fepcrt (Ccllece cf william

and Mary) 10 p avail: N1I1S EC AQ2/MF AG1
CSCL 09B

N87-28323

Unclas
G3/63 00531%5

A Software Toolbox For Robotics Page 2
Abstract

We give a method for programming cooperating manipulators, which
is guided by a geometric description of the task to be carried out,
For this we must have a suitable language and a method for describing
the workplace and the objects in it in geometric terms. A task level
command language and its implementation for concurrently driven
multiple robot arms is described. The language is suitable for
driving a cell in which manipulators, end effectors and sensors are
controlled by their own dedicated processors and these processors can
communicate with each other through a communication network. A
mechanism for keeping track of the history of the commands already
executed allows the command language for the manipulators to be event
driven. A frame based world modeling system is utilised to describe
objects in the work environment and any relationships that hold
between these objects. This system provides a versatile tool for
managing information about the world model. Default actions normally
needed are invoked when the data base is updated or accessed. Most
of the first level error recovery is also invoked by the database by
utilising the concepts of demons. The package can be utilised to

generate task level commands in a problem solver or a planner.

A Software Toolbox For Robotics Page 3

1.0 SUMMARY OF RESULTS OBTAINED:

1. I examined the existing Puma interface and found that it
will have to be modified so that it can be used in a cell with
muitiple arms.

2. Therefore I implemented a simulator for a system with
multiple arms and changeble end effectors for each arm. A list is
maintained of all available resources for the arm. Dry runs can be
made for a task to see whether there will be any special obstacle in
carrying it out.

3. Implemented a scheme which keeps the history of all the
commands given to any unit of the system. The history is kept in two
places in different forms. It is stored in a disc file where it can
be examined later for debugging and optimization. It is also kept in
memory as a stack to be used by the program for control of the
system.

4, 1 implemented a data base using the concept of frames.

5. This data base is interfaced to the system and is used in
writing task lTevel commands. When the task level commands are issued
the world model is automatically updated and a snap shot can be
taken.

6. A function can be defined to determine the working envelope
of the Puma arm. This function can be called to determine if a point
lies outside the reach of the arm. If the end effector is commanded
to move to a point outside the envelope of the manipulator the

program can detect it and thus can take corrective action without

issuing the command.

A Software Toolbox For Robotics Page 4

In addition the effective envelope can be modified, by changing some
constants in the function, and thus it can be used to give to the arm
some collision avoidance capability with itself and other fixed

obstacles such as the waist column of the arm, the base table etc.

A Software Toolbox For Robotics Page 5

2.0 INTRODUCTION

In designing a controller for a manipulator the manufacturer
uses diverse schemes to control the motion of the manipulator arm.
These can be thought of as machine instructions for the manipulator.
We give a standard instruction set which can be constructed from the
manufacturer's set. Thus different manipulators can be integrated in
a system in a uniform manner. This set is adequate to implement task
level conditional commands for a manipulator when we interface them
with a data base.

3.0 STANDARD SET

For a manipulator we can implement the following basic commands
([4] Orlando):

(INITIALIZE ARMNUMBER) --= (1)
which puts the indicated manipulator arm in a predetermined state.

(MOVE ARMNUMBER XYZOAT-LIST) --= (2)
moves the origin of the orthogonal coordinate frame associated with
the end effector of the arm to the location with cartesian
coordinates (x, y, z) and orients this frame with respect to a fixed
reference coordinate frame with angular coordinates (phil, phi2,
phi3). In other words, XYZOAT-LIST is a point in the semidirect
product of E(3) (the 3-dimensional euclidean space) and SO(3) (the
group of rigid motions of E(3)). The end effector is not forced to
follow any predetermined path.

(MOVE-ALONG ARMNUMBER DIRECTION-DISTANCE-LIST) --- (3)
moves the origin of the end effector for a distance d along a vector
(x, ¥, z) from its present position. The orientation of the end

effector is not modified by this instruction,

A Software Toolbox For Robotics Page 6

(SET-ANGLES ARMNUMBER ANGLE-LIST) --- (4)
sets the links of the manipulator at the ANGLE-LIST.

(POSITION ARMNUMBER) --- (5)
returns the current XYZOAT-LIST coordinates of the end effector.

(STATUS ARMNUMBER IDENTIFICATION-NUMBER) --- (6)
can be used to find out whether the command with the given
identification number has been completed or is still pending.

(RESUME ARMNUMBER) - (7)
enables the arm and

(SUSPEND ARMNUMBER) --- (8)
disables the arm. The last two commands cancel each other out,

(CANCEL ARMNUMBER) --- (9)
deletes all commands to the arm that are on the command queue.

4,0 HISTORY MANAGEMENT

If the receiving unit is enabled it puts on its command queue
commands of type (1)-(4) and carries them out sequentially. Whenever
a command has been completed the central processing unit moves it to
its history stack along with the identification number given to it by
the issuing unit. Notice that the issuer's event count is used even
though the device may maintain its own time stamp. Normally the
commanding unit does not wait after giving these commands although
the receiving unit does issue a completion report when it transfers
the command to its history stack. If the status command is received
the central processing unit searches this stack to give its response.

Commands of the type (5)-(9) are executed immediately even if it is

A Software Toolbox For Robotics Page 7

command is stacked in front of the command queue. For commands of

type (5)-(9) the commanding unit waits for the response.

In a work cell system, as shown in figure 1, the connecting
lines indicate the communication path between the central processing

units.

5.0 DATA BASE FOR WORLD MODELLING

To be able to implement high level commands for the manipulators
we have implemented a data base to represent the working environment
using frames. In the implementation all the default actions normally
needed are invoked when the data base is updated or accessed. Frames
([2] Minsky) are structures to make declarative statments about
objects and relationships between objects. We selected a frame based
data base because of the ease with which the working environment can
be described in geometric terms. Thus two typical frames in this
world model which describes an arm and an object of the system would
be:

(arml (type (name (puma)))
(base (radius (150.0)))
(init (value ((1064.4 681.461 1092.4 0.0 0.0 0.0))))
(located (value ((1064.4 681.461 0.0 0.0 0.0 0.0))))
(using (hand (handl))))
(a (type (value (cube)))
(height (value (35.0)))
(base (radius (24.75)))
(on (object (p)))
(located (value ((1480.0 895.0 35.0 3.14 0.0 0.0)))))

A Software Toolbox For Robotics Page 8

6.0 CONCURRENT PROGRAMMING LANGUAGE

Using the above history management scheme we can now implement a
language to program a multiple arm cell. Thus in the command

(COND-PUT ARM OBJECT LOCATION SET-COND TEST-COND) --- (10)
all the information about the OBJECT is stored in a frame and
suitable error recovery functions are invoked when the MOVE and PICK
subcommands of the COND-PUT are issued. The COND-PUT waits for
TEST-COND to be true before it starts executing and when completed
sets the SET-COND to true. An interpreter for the language is
implemented using the communication network, the time stamp and the
history tables described above.

To illustrate some of the commands and'how they can be used to
describe a task in the language we give a program to build a seesaw
of figure 2.

(CMOVE ARM1 HAND1 BAR A ON C10 PV1)

(CPICK ARMZ HAND2 A2 (21 PV2)

;pvl, pv2 are condition codes returned by the previous task

;C10 will be set to T when CMOVE has placed the BAR on the block A
;and C21 will be set to T when CPICK has picked up the object A2
(CPICK ARM1 HAND1 Al (11 C10)

(CMOVETO ARM2 BAR-RT C22 (C21)

(CMOVETO ARM1 BAR-LT C12 Cl11)

(CRELEASE ARM2 HAND2 (€23 (AND C12 C22))

; (AND C12 C22) guarantees that both objects Al and A2 are immediately
;above the bar so that if one cube is placed before the other the bar
;would not fall

(CRELEASE ARM1 HAND1 (13 C12)

A Software Toolbox For Robotics Page 9
7.0 REFERENCES

[1] Brady, Michael, et al., [1982], Robot Motion: Planning and
Control. MIT Press, Cambridge.

[2] Hopcroft, John, [1983], Robotics - A New Direction in Theoretical
Computer Science. Third International Conference on the Foundation
of Software and Theoretical Computer Science, Banglore.

[3] Lozano-Perez, Tomas, [1983], Robot Programming, Proceeding of the
IEEE, vol 7.

. [4] Minsky, M, [1975], A Framework for Representing Knowledge. The
Psychology of Computer Vision (P. Winston, Ed.), McGraw Hill, New
York.

[5] Orlando, Nancy E., [1984], An Intelligent Robotics Control
Scheme. American Control Conference, San Diego, California.

[6] Orlando, Nancy E., [1985], Device Command Sets, ISRL internal
memo. Langely Research Center, Hampton, Virginia.

[7] Sanwal, J. C., [1984], Commands for Cooperating Robot Arms.
NASA report number 172409, Langley Research Center, Hampton,
Virginia.

[8] Sanwal, J. C., [1985], Programming of Robot Arms by Geometric
Description. NASA/ASEE report, Langley Research Center, Hampton,

Virginia.

A Software Toolbox For Robotics
CPU
™~
¢Pu ‘ CPU gm cpu——lpu
manipulator end end force/torque manipulator
effector effector sensor wrist

Figure 1: Multiple robot arms cell

Al A2

Figure 2: A seesaw

Page 10

